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GPU name GeForce 
8800GTX 

Quadro 
FX5600 

GeForce 
8800GTS 

GeForce 
8600GTS

# of SIMD cores 16 16 12 4 
core clock, GHz 1.35 1.35 1.188 1.458 

peak Gflop/s 346 346 228 93.3 
peak Gflop/s/core 21.6 21.6 19.0 23.3 
memory bus, MHz 900 800 800 1000 
memory bus, pins 384 384 320 128 
bandwidth, GB/s 86 77 64 32 
memory size, MB 768 1535 640 256 

flops:word 16 18 14 12 
Table 1: The list of the GPUs used in this study. Flops:word is the 
ratio of peak Gflop/s rate in multiply-and-add operations to pin-

memory bandwidth in words.  
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Abstract 
We present performance results for dense linear algebra using 
the 8-series NVIDIA GPUs. Our matrix-matrix multiply routine 
(GEMM) runs 60% faster than the vendor implementation in 
CUBLAS 1.1 and approaches the peak of hardware capabilities. 
Our LU, QR and Cholesky factorizations achieve up to 80–90% 
of the peak GEMM rate. Our parallel LU running on two GPUs 
achieves up to ~300 Gflop/s. These results are accomplished by 
challenging the accepted view of the GPU architecture and 
programming guidelines. We argue that modern GPUs should be 
viewed as multithreaded multicore vector units. We exploit 
blocking similarly to vector computers and heterogeneity of the 
system by computing both on GPU and CPU. This study 
includes detailed benchmarking of the GPU memory system that 
reveals sizes and latencies of caches and TLB. We present a 
couple of algorithmic optimizations aimed at increasing 
parallelism and regularity in the problem that provide us with 
slightly higher performance. 

1 Introduction 
We make the following contributions. For the first time, we 
show an LU, QR and Cholesky factorization that achieve 
computational rates that approach 200 Gflop/s on a GPU. These 
are three of the most widely used factorizations in dense linear 
algebra and pave the way for the implementation of the entire 
LAPACK library for the GPUs. 

These rates are achieved on the 8-series of NVIDIA GPUs 
that have been available for about 1.5 years. However, we 
program these GPUs in a way that was not done before and 
achieve performance in such basic kernels as matrix-matrix 
multiply that is 60% higher than those in the optimized vendor’s 
library CUBLAS 1.1. In the core of our approach we think of the 
GPU as a multithreaded vector unit, which provides many 
insights and inspirations from the mature field of vector 
computing. 

We perform detailed benchmarks of the GPU and reveal 
some of the bottlenecks, such as access to the on-chip memory 
that bounds the performance of our best codes, and kernel 
launch overheads that prohibits efficient fine-grain 
computations. The benchmarks reveal the structure of the GPU 
memory system, including sizes and latencies of the L1 and L2 
caches and TLB. We implement and measure the performance 
of global synchronization primitives such as barrier for the first 
time on the 8-series of GPUs. We believe this is an important 
component for the overall programmability of current GPUs. 

To achieve the best performance in matrix factorizations we 
use state of art techniques such as look-ahead, overlapping CPU 
and GPU computation, autotuning, smarter variants of 2-level 
blocking, and choosing the right memory layout; we also use a 
novel algorithm with modified numerics. We analyze the 
performance of our implementations in detail to show that all 
components of the final system run at the nearly optimal rates. 

Our best speedups vs. one dual core CPU are up to 7−8× in 
all 3 factorizations and 3−5.5× vs. one quad core CPU. 

The rest of this paper is organized as follows. Section 2 
describes the architecture of the GPUs we used, highlighting the 
features important for performance, and drawing parallels to 

conventional vector and SIMD architectures. Section 3 
benchmarks operations including memory transfer, kernel start-
up, and barriers, and uses these to analyze the performance of 
the panel factorization of LU. Section 4 discusses the design and 
performance evaluation of matrix multiplication. Section 5 
discusses the design of LU, QR and Cholesky, and Section 6 
evaluates their performance. Section 7 summarizes and 
describes future work. 

2 GPU Architecture 
In this work we are concerned with programming 8-series 
NVIDIA GPUs, as listed in Table 1. They expose extensive 
programming flexibility such as being able to execute scalar 
threads with arbitrary memory access patterns and branch 
behaviors, which are best described in the CUDA programming 
guide [NVIDIA 2007]. However, exploiting this flexibility may 
cost 10–100× loss in performance; see Section 3.7 for an 
example that exposes the factor of 100×. 

In this section we describe GPUs as multithreaded SIMD 
architectures. Novel facilities that are not usually present in 
SIMD architectures and designed to support non-SIMD 
programs at performance cost are briefly reviewed but not used 
in the rest of the paper. The purpose of this exposition is to 
encourage the user to expose parallelism as required by the 
hardware and reuse previous findings in programming vector 
and SIMD architectures. 

2.1 SIMD Cores 
Earlier GPUs had a 2-level SIMD architecture — an SIMD array 
of processors, each operating on 4-component vectors. Modern 
GPUs have a 1-level SIMD architecture — an SIMD array of 
scalar processors. Despite this change, it is the overall SIMD 
architecture that is important to understand. 

The fastest GPU in our study, GeForce 8800GTX, has 128 
scalar processors which are partitioned into 16 multiprocessors 
[NVIDIA 2006; NVIDIA 2007]. The multiprocessors have an 
SIMD architecture [NVIDIA 2007, Ch. 3.1]. Scalar threads are 
grouped into SIMD groups called “warps” [NVIDIA 2007, Ch. 
3.2], with 32 scalar threads per warp [NVIDIA 2007, Ch. A.1]. 
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There is one instruction fetch/dispatch unit per multiprocessor 
that synchronously broadcasts instructions to the scalar 
processors. It takes 4 cycles to execute one instruction for the 
entire warp [NVIDIA 2007, Ch. 5.1.1.1], i.e. one scalar 
instruction per cycle per scalar processor. 

Thus, a multiprocessor is an SIMD unit with scalar 
processors effectively being its SIMD lanes. We refer to it as a 
SIMD core to put it into the context of other modern multicore 
systems, such as Core2 and Cell. This definition is also 
convenient from a performance perspective. One GPU core has 
19–23 Gflop/s of peak arithmetic performance in multiply-and-
add operations (see Table 1), which is similar to the peak 
performance of the CPU cores (~21.3 Gflop/s/core for 2.66GHz 
Intel Core2) and SPE units of the Cell processor (25.6 Gflop/s 
per SPE). 

Another important feature of GPUs is multithreading that is 
designed to hide memory and pipeline latencies. To facilitate a 
low-cost context switch, all simultaneously running threads keep 
their register states in the same register file. The number of 
registers consumed by a thread depends on the program. There 
is also a small local memory storage on each SIMD core called 
shared memory that is partitioned among groups of threads 
called thread blocks. The user is allowed to create more threads 
than can fit simultaneously in registers and local memory. In 
that case some of the threads are not initiated until others finish. 
However, this mechanism is provided for convenience and 
promises little performance and functionality gain. 

2.2 Executing Non-SIMD Programs 
SIMD architectures permit simulating fully MIMD execution by 
following all execution paths in the program and masking non-
participating processors off. GPUs offer a novel optimization to 
this execution style. First, they manage the stack of predication 
masks in hardware to save and restore the previous predication 
state at branch instructions. Second, if all scalar threads within 
the SIMD width take same path, other paths are not executed at 
all. The mechanism is discussed in detail in other companies’ 
manuals, such as [AMD 2006]. NVIDIA describes a similar 
mechanism, but in less detail [NVIDIA 2007, Ch. 5.1.1.2]. 

The purpose of this mechanism is functionality, not 
performance. Branch divergence within SIMD width should be 
avoided if possible to avoid idle cycles on the scalar processors 
that are masked off. 

2.3 SIMD Memory Access 
GPUs provide high-bandwidth non-cached SIMD memory loads 
and stores. These operate on correctly aligned contiguous 
locations in memory.  

As with control structures, non-cached non-SIMD memory 
operations are also supported in hardware but run at an order of 
magnitude lower bandwidth. Thus, they must be avoided if 
possible. For example, a stride-2 vector fetch may be 
implemented instead as an aligned stride-1 fetch by discarding 
the redundantly fetched data. 

GPUs also provide cached memory fetches. These do not 
require exposing an SIMD pattern for better performance. 
However, cached access requires high spatial locality within 
every vector gather due to the small cache size, see Section 3.3 
for more details. 

All these types of memory accesses are exposed in the ISA 
as indexed gathers and scatters. This implies supplying 
redundant indices in the case of SIMD accesses. 

2.4 On-Chip Memory Hierarchy 
Each SIMD core has 32KB register file partitioned across SIMD 

lanes. For the GeForce 8800 GTX this amounts to 512KB on a 
single chip, which is larger than any other particular level of the 
on-chip memory hierarchy. This motivates different design 
decisions than those used for superscalar processors that have 
relatively few registers (e.g. 128−256 bytes in SSE units) and 
massive caches. 

The second largest level of the on-chip memory hierarchy is 
the local memory — it is 16KB per SIMD core and 256 KB in 
total. It can effectively be used as scalar registers and also 
permits indexed access. 

Other important on-chip memories are L2 and L1 read-only 
caches that amount to 192KB and 40KB on 8800GTX 
respectively according to our research as presented in Section 
3.3. 

2.5 Vector Program Model 
Performance programming for GPUs is most similar to 
programming for other multicore SIMD architectures, such as 
Core2 SSE and Cell SPE units. Such programs are often 
expressed as operations on vectors. This can be applied to GPUs 
by exposing a single warp as one SIMD or vector thread. Scalar 
threads such as exposed in CUDA correspond to vector 
elements. We also use term vector thread when referring to a 
thread block. This conveniently expresses independent threads 
of data-parallel work, encapsulates data-parallel communication 
using local memory and simulates configurable vector length. 

The vector length should be set to a small multiple of the 
native SIMD width. The CUDA programming guide 
recommends a multiple of 64 scalars to avoid register bank 
conflicts [NVIDIA 2007, Ch. 5.1.2.5]. In practice we found that 
64 may both give the nearly best performance as demonstrated 
in Section 3.4 and keep resource consumption low. Indeed, 
temporary values in data-parallel program consume at least the 
vector length. Scalar values and operations may also need to be 
replicated across the entire vector length. Memory scatters and 
gathers require as many pointers as the vector length. This all 
motivates using short vectors. Longer vectors that may be 
convenient to deal with in applications should then be strip-
mined into shorter vectors. As longer vectors are implemented 
using more warps, i.e. native SIMD threads, strip-mining 
converts thread-level parallelism into instruction-level 
parallelism that also contributes towards hiding pipeline and 
memory latencies. 

3 Microbenchmarks 
The results reported in this section were measured on a few 
different systems running Windows XP and 64-bit Linux, each 
equipped with one of the four GPUs listed in Table 1. The name 
of a particular GPU is mentioned if it matters. All programming 
of GPUs was done using CUDA 1.1 if not specified otherwise. 

To ensure the quality of the GPU code produced by the 
CUDA compiler we used decuda1, which is a third-party 
disassembler of the GPU binaries. The vendor’s tools, such as 
the virtual ISA called PTX, was less helpful, as it exposes 
different consumption of instruction slots and registers. The 
native instruction set for NVIDIA GPUs is not officially 
released. 

3.1 Kernel Launch Overhead 
It takes 5 μs to invoke a GPU kernel using the low-level CUDA 
API (one cuLaunchGrid call or two cuParamSetv and 
cuLaunchGrid calls if new arguments must be supplied — 

                                                 
1 http://www.cs.rug.nl/~wladimir/decuda/ 
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Figure 2: Summary of the memory system of 8800GTX 
according to our study. Sizes of the on-chip memory levels are 
shown in the same scale. Latencies shown are for the cached 

access. Note the small size of the L1 caches. 

Figure 1: Memory latency as revealed by the pointer chasing 
benchmark on GeForce 8800 GTX for different kinds of memory 

accesses. Array size is shown in the boxes. Cached access 
assumed unless otherwise specified. Blue, red and green lines 

highlight 5KB cache, 192 KB cache, and 512KB memory pages 
respectively. Solid black is non-cached access, dashed black is 

local memory. 

both cases give similar timings). It takes 5−7 μs if done with the 
higher level API (<<< >>> expression). This was measured by 
asynchronously invoking the same kernel a very large number of 
times and synchronizing once at the end (e.g. using 
cudaThreadSynchronize API call). The program used 
was the simplest possible, such as copying one word from one 
location in the GPU memory to another. This is to ensure that 
the program runtime does not contribute substantially to the 
overall time. The time increases to 11−12 μs when 
synchronizing at each kernel invocation. This gives an idea of 
how expensive the synchronization is. 

To ensure that we do not sacrifice performance by choosing 
CUDA for programming the GPU we also measured overheads 
in DirectX 9.0c, which is a mature graphics API widely used in 
computer games. The timings were 7 μs for invocation alone 
and 21 μs for invocation with synchronization (synchronization 
is required when computing with DirectX to ensure correctness). 
This indicates that CUDA is as efficient as or better than 
DirectX. 

3.2 CPU-GPU Data Transfers 
The GPUs used in this study were designed for the PCIe 1.1 ×16 
interface that bounds the bandwidth of the CPU-GPU link by 4 
GB/s (newer GPUs support PCIe 2.0 which is twice as fast). We 
found that transferring contiguous pieces of data with sizes from 
1 byte to 100 MB long across this link using CUDA with pinned 
memory takes about 

  
Time =15μs + bytes transferred

3.3GB /s
.               (1) 

This fits the measured data within a few percent. 

3.3 GPU Memory System 
The vendor’s manuals supply limited information on GPU 
caches. The CUDA programming guide specifies an 8KB cache 
working set per SIMD core [NVIDIA 2007, Ch. A.1], i.e. 
128KB for the entire 8800 GTX chip (there is also a cache for 
small constant memory that we leave out of scope in this paper). 
He et al. [2007] estimate the size of the 8800GTX cache to be 
392KB. None of them differentiate levels of cache. However, it 
is known that the 8800GTX has one L1 cache per two cores and 
six L2 caches [NVIDIA 2006]. L1 caches are connected with L2 

caches via a crossbar. 
We use a traditional pointer chasing benchmark similar to 

that used, for example, in LMBench2 to reveal the latency and 
structure of the memory system. It traverses an integer array A 
by running k = A[k] in a long unrolled loop, yielding the time 
per one iteration. This time is dominated by the latency of the 
memory access. The traversal is done in one scalar thread, and 
so utilizes only one GPU core and may not see caches associated 
with other cores. The array is initialized with a stride, i.e. A[k] = 
k + stride mod array size. We test cached and non-cached 
memory access to the off-chip memory and also access to the 
local memory (in which case data is first copied from the off-
chip memory and this time is later subtracted). Results for 
different array sizes and strides on the 8800 GTX are shown in 
Fig. 1. 

A larger latency indicates more cache misses. The array size 
defines the working set and reveals the cache size, such as 5KB 
and 192KB in the Figure. The higher latency of the long-stride 
non-cached access indicates the presence of a TLB, which is not 
officially documented to the best of our knowledge. The stride 
reveals cache lines and memory pages, such as 32 bytes and 
512KB in the Figure. When the stride is very large, working set 
decreases until it again fits in the cache, this time producing 
conflict misses if cache is not fully associative. The data in Fig. 
1 suggests a fully associative 16-entry TLB (no TLB overhead 
for 128MB array, 8MB stride), a 20-way set associative L1 
cache (20KB array at 1KB stride fits in L1), and a 24-way set-
associative L2 cache (back to L2 hit latency for 768KB array, 
32KB stride). These are the effective numbers and the real 
implementation might be different. Six 4-way set-associative L2 
caches match this data as well. 

According to this data, L1 cache has 160 cache lines only (in 
8 fully associative sets). This promises a 100% miss rate in 
every cached access unless scalar threads are sufficiently 
coordinated to share cache lines. 

Figure 1 reveals a 470−720 cycle latency non-cached 
memory access that roughly matches the official 400−600 cycle 
figure [NVIDIA 2007, Ch. 5.1.1.3]. 

To find the total amount of the partitioned cache memory, 
we run a multithreaded test that utilizes all cores. We run one 
thread per core (this is enforced by holding a large amount of 
local memory per thread), each traversing through a private 
array so that their working sets do not overlap. The results match 
the official data, with the effective size of L1 cache scaling with 

                                                 
2 http://www.bitmover.com/lmbench 
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the number of cores. Effective L2 cache size did not scale. Fig. 2 
summarizes the parameters of memory system of 8800GTX 
including the findings cited above. Preliminary study shows that 
TLB also scales with number of cores. 

Similar tests and plots for other GPUs in this study 
suggested the same sizes of L1 caches (5KB per 2 cores) and 
TLB (16 entries per TLB), and showed that L2 caches scale as 
memory pins: 32KB for each 64 pins (to match 6 caches in the 
8800 GTX [NVIDIA 2006]). Also, it matches 128MB memory 
per 64 memory pins on all GPUs but the FX5600, which has 
twice as much memory. Our guess is that L2 GPU caches are 
similar in function to the hot-spot caches on the earlier highly 
multithreaded processors such as Tera MTA [Alverson et al. 
1990] that were designed to alleviate contention at memory 
banks. 

Latencies expressed in cycles were about same on all four 
GPUs. Note that an L1 cache hit costs about 280 cycles (260 on 
8600 GTS) which is about half of the memory access latency. 
According to the vendor’s manual, the purpose of the GPU 
cache is to reduce “DRAM bandwidth demand, but not fetch 
latency” [NVIDIA 2007, Ch. 5.1.2.3]. Interestingly, the same 
purpose is followed in the design of the vector cache in the Cray 
BlackWidow vector computer [Abts et al. 2007]. 

 Latency to the local memory is an order of magnitude less 
than to the cache ⎯ 36 cycles. To measure it more accurately 
and compare to the pipeline latency we performed a separate 
experiments on 8800GTX. This time we execute a = a * b + c 
operation many times in an aggressively unrolled loop.  We used 
decuda to ensure that this operation maps to a single native 
instruction. When all three variables are in registers the 
measurements show 24 cycle throughput per instruction that is 
6× larger than at the peak throughput and is an estimate of the 
pipeline latency. Same test showed 26 cycles when b was in 
local memory. 2 extra cycles for operations with local memory 
appear again in Section 3.5. 

24 cycle latency may be hidden by running simultaneously 6 
warps or 192 scalar threads per SIMD core, which explains the 
number cited in the CUDA guide [NVIDIA 2007, Ch. 5.1.2.5]. 

3.4 Attaining Peak Instruction Throughput 
We were able to achieve 98% of the arithmetic peak on 
8800GTX in register-to-register multiply-and-add instructions. 
This was achieved running a single vector thread per SIMD 
core. Vector length was two warps or 64 elements (1024 scalar 
threads in total). Each thread performs a group of 6 independent 
multiply-and-adds a million times in an aggressively unrolled 
loop. The number 6 was chosen to hide the pipeline latency no 
matter how many threads are run per SIMD core. However, it 
didn’t work when there was only one warp per SIMD core (we 
got 50% of peak only) or two warps in different thread blocks 
(66% of peak) when using the same code. 

3.5 Throughput when using Local Memory 
According to decuda, locations in local memory can be used as 
an instruction operand. However, the best of our experiments 
yielded only 66% of the arithmetic peak on all four GPUs in 
multiply-and-add instructions with one operand in local 
memory. This corresponds to 6-cycle throughput per warp 
versus the usual 4 and 230 Gflop/s on 8800GTX. 

To isolate the effect, we tried different local memory access 
patterns keeping the structure of the inner loop unperturbed. We 
found that it takes 12 cycles per instruction if each local memory 
access involves a 2-way local memory bank conflict (as defined 
in [NVIDIA 2007, Ch. 5.1.2.5]), 24 cycles if conflicts are 4-
way, etc. This fits the description in the CUDA guide that says 

that conflicting accesses are serialized. This indicates that the 
bottleneck is in the local memory access, not in the hidden 
pointer arithmetic. 

3.6 Faster Global Barrier 
A global barrier is a basic synchronization primitive that is 
widely used in many parallel algorithms. Currently, it is 
common to assume that global barrier on the GPU should be 
implemented by invoking a new kernel, which involves 
expensive overhead as we have found in Section 3.1. For the 
first time we show that it is possible to implement global a 
barrier within a single kernel run. Of course, it synchronizes 
only among threads that run simultaneously and thus introduces 
explicit dependence on the number of GPU cores. In Section 3.8 
we argue that this mechanism may be important in fine-grain 
computations on the GPUs. 

Our implementation does not use atomic primitives 
available in the newer GPUs (however, it assumes that word-
wide non-cached memory reads and writes are atomic). Instead, 
we replicate the variables used in the synchronization to ensure 
that different threads never write to the same address. This keeps 
changes to these variables atomic. In our implementation we 
allocate arrival and wakeup variables for each vector thread. 
There is one master vector thread and others are slaves. The i-th 
slave updates the i-th arrival variable and spins on the i-th 
wakeup variable until that is updated. The master thread spins on 
the arrival variables until every one is updated, then updates 
every wakeup variable. For better efficiency we lay out the 
counters in memory to ensure that the head thread fetches and 
stores the variable values using a single SIMD memory access. 
In our prototype implementation we pick the vector length equal 
to the total number of vector threads created. 

1.3−1.6 μs or 1920−2000 cycles per barrier was observed on 
all four GPUs used in the study when running one vector thread 
per core. This is about 4 memory latencies of non-cached access, 
which is the minimum number of data trips between the 
processing chip and the memory as assumed by the algorithm. 
This time was up to 2800 cycles when running multiple (up to 8) 
vector threads per core. 

Although substantial, this time is 3−4× less than the kernel 
launch overhead, so it can be used to speedup fine-grain 
computations that otherwise require multiple kernel runs. 
However, we note that this barrier does not guarantee that 
previous accesses to all levels of the memory hierarchy have 
completed unless a memory consistency model is assumed. 
Also, its practical application is complicated by the inability to 
change the thread block size and the register partitioning during 
the kernel execution. 

3.7 GPU Memory Bandwidth 
The best bandwidth in copying within GPU memory on the 
8800GTX that we could attain was 76 GB/s, which is 88% of 
the pin-bandwidth. This proves that a large fraction of the peak 
bandwidth may be attained in SIMD accesses, which should be 
the goal in all bandwidth-bound codes. However, the same code 
gets 11× lower bandwidth if the supplied pointers are not 
aligned. Thus, performance codes must always include basic 
optimizations to avoid misaligned accesses. For example, a 
misaligned stride-1 copy should be converted into a large 
aligned stride-1 copy and one less efficient but much smaller 
copy at the head of the array. This can be performed within a 
single kernel call. 

Even stronger deterioration is possible in strided accesses. 
Copying 218 32-bit numbers in GPU memory with strides 1, 8 
and 512 takes 34 μs, 260 μs and 2600 μs correspondingly, 
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Figure 3: Gflop/s rates achieved in LU factorization of m×64 
panel. GPU is 8800GTX programmed using CUDA 2.0 beta, 

CPU is 2.66GHz Core2 Duo CPU using Intel MKL 10.0. Curve 
corresponds to the GPU performance if not specified otherwise.
Dashed lines are theoretical estimates, others are empirical data. 

which is effectively 62 GB/s, 8.1 GB/s and 0.81 GB/s. This is 
done by a simple code, where each vector thread reads and 
writes one vector with the given stride. Performing the same 
operation using the possibly better optimized vendor’s library 
CUBLAS 1.1 gave similar results. 

3.8 Implications for Panel Factorization 
Results shown by Barrachina et al. [2008] and Baboulin et al. 
[2008] indicate that copying a matrix panel to the CPU memory, 
factorizing it using the CPU and transferring it back to the GPU 
may take less time than performing panel factorization on the 
GPU using the vendor-supplied BLAS library. We analyze this 
behavior below using a performance model. 

Consider running the LU factorization of a panel as done in 
LAPACK’s sgetf2 on the GeForce 8800GTX. This routine is 
built of calls to BLAS1 and BLAS2 that have flop-to-word ratio 
as low as 1 or 2, which is much below the flop-to-word ratio of 
the GPUs (see Table 1) and thus are bandwidth bound. Let us 
assume they are efficiently implemented, i.e. run in  

  
Time= 5μs + bandwidth required

75GB/s
,   (2) 

where we used the kernel launch overhead and the peak 
sustained bandwidth found above. (Although one might imagine 
an environment where runtime of the GPU program and launch 
overhead overlap, we observed that these times sum up in 
practice if the most efficient invocation routine in CUDA 1.1 is 
used.) For example, consider the BLAS1 routine sscal that 
scales a vector by a constant factor. It does n flops and requires 
2n words of bandwidth for an n-element vector. The highest rate 
it can attain on this GPU is therefore r∞ = 9.4 Gflop/s. Half of 
this rate is achieved at n1/2 ≈ 47,000, i.e. it runs at 5−10μs for 
any n < 47,000. The best of our GPUs has 1.5GB memory that 
fits up to 20,000×20,000 matrices. Thus, for practical square 
matrix sizes sscal effectively runs in O(1) time instead of the 
asymptotic O(n). 

Using this model we estimate the runtime of the entire 
factorization of an m×n panel, m > n. It involves n calls to each 
of the isamax (finds largest element in a vector), sscal, 
sswap (swap rows) and n–1 call to sger (rank-1 update). 
Assume an ideal implementation, i.e. each routine reads and 
writes inputs and outputs only once (e.g. the input row and 
column in the rank-1 update stay in cache, registers or local 
memory). Fig. 3 shows the result for n = 64 (labeled “estimate”) 
compared with few other Gflop/s rates. 64 is the panel width we 
use in practice as described in Section 5. 

According to the plot, the GPU may yield up to 2.4× 
speedup vs. the CPU (labeled “CPU+transfer”) but may achieve 
this efficiency only at large problem sizes. The CPU timings in 
the plot are handicapped by including the time to transfer panel 
to the CPU and back computed as in (1). 

The asymptotic performance of the factorization computed 
using the model is 18.8 Gflop/s. Only a small fraction of it is 
achieved when factorizing a small panel mostly due to the large 
startup times. To highlight the importance of the faster global 
barrier introduced in Section 3.6, we computed similar estimates 
using its overhead, which is 1.4μs on this GPU, as the startup 
time in (2). The new estimate is plotted in the same Figure and 
labeled “fast barrier, estimate”. The new barrier promises to 
yield up to 3× speedup and outperforms CPU starting at smaller 
m ≈ 750. 

In the same graph we show two implementations of the 
panel factorization on the GPU that are labeled “optimized” and 
“naive”. One of them is a naïve implementation that executes 
LAPACK’s sgetf2 code using CUBLAS 2.0 beta. This is a 
newer version of CUBLAS that contains a faster implementation 

of sger than in CUBLAS 1.1. The only substantial difference 
with the LAPACK code that we introduced was not checking if 
1/aii underflows, thus always using cublasSscal. The factors 
aii were fetched to the CPU using cublasGetVector. This 
version achieves up to 1.5 Gflop/s which is only 11% of the 
estimated value. This is also 10% of the peak sustained rate of 
cublasSger which is 15.0 Gflop/s for aligned data. The low 
fraction is due to working with unaligned data. 

The second implementation included a couple of basic 
optimizations. The most important optimization was to 
implement sger as two calls to cublasSger in the manner 
described in Section 3.7 to reduce the work done with unaligned 
data. Another optimization was implementing isamax on the 
CPU if m is small enough. In that case the data is first fetched to 
the CPU memory, then reduction is performed.  This 
implementation runs up to 5× faster than cublasIsamax  in 
CUBLAS 2.0 beta, which never takes less than 74μs (~15 kernel 
launch overheads!). Finally, scaling was implemented by a 
custom kernel that does not require copying aii to the CPU. The 
optimized version runs at up to 5.8 Gflop/s which is nearly 4× 
speedup compared to the non-optimized code. However, this is 
only 41% of the estimated value. 

The rate achieved in cublasSger in the optimized code is 
shown in the same plot (labeled “sger alone”). Most of the work 
is done in this routine. Note the gap in performance with the 
entire panel factorization. This is the practical slowdown due to 
the low work-to-cost ratio of isamax, sscal and sswap. 

Further optimization might bring performance closer to the 
estimates. However, there could be other fundamental 
bottlenecks that prohibit achieving this simplified estimate. 
Implementing panel factorization on the GPU may not worth the 
effort and it may be preferable to offload this work to the CPU. 
We always perform panel factorization on the CPU in practice. 

4 Design of Matrix-Matrix Multiply Routine 
In this Section we describe the designs of AB and ABT matrix-
matrix multiplication routines that run at up to 90% of the 
arithmetic peak for operations using local memory as found in 
Section 3.5. This is 60% faster than in the CUBLAS 1.1 library 
released by NVIDIA. At the time of writing, our codes have 
been adopted NVIDIA and are included in CUBLAS 2.0 beta. In 
Section 6.3 we describe a few independent works that have been 
done using our routines. 



 

6 
 

// version: C := αABT + βC 
Compute pointers in A, B and C using thread IDs 
s[1:4] = next 64×16 block in A 
t = next 4×16 block in B 
c[1:16] = 0 
do 
    copy s[1:4] into a[1:4] 
    copy t into b[1:4][1:16] 
    (local barrier) 
    s[1:4] = next 64×16 block in A 
    t = next 4×16 block in B 
    c[1:16] += a[1:4]*b[1:4][1:16] 
    (local barrier) 
    update pointers in A and B 
repeat until pointer in B is out of range 
copy t into b[1:4][1:16] 
(local barrier) 
c[1:16] += s[1:4]*b[1:4][1:16] 
Merge c[1:16] with 64×16 block of C in memory 

// version: C := αAB + βC 
Compute pointers in A, B and C using thread IDs 
c[1:16] = 0 
do 
    a[1:4] = next 64×16 block in A 
    b[1:16][1:16] = next 16×16 block in B 
    (local barrier) 
    c[1:16] += a[1:4]*b[1:4][1:16] 
    a[1:4] = next 64×16 block of A 
    c[1:16] += a[1:4]*b[5:7][1:16] 
    a[1:4] = next 64×16 block of A 
    c[1:16] += a[1:4]*b[8:11][1:16] 
    a[1:4] = next 64×16 block of A 
    c[1:16] += a[1:4]*b[12:15][1:16] 
    (local barrier) 
    update pointers in A and B 
repeat until pointer in B is out of range 
Merge c[1:16] with 64×16 block of C in memory 

Figure 4: Vector thread programs for matrix-matrix multiply. Bold characters a, c, s and t represent vector registers, b is in local memory. 

4.1 Block Matrix Multiply 
Consider evaluating product C := C + AB, where A, B and C are 
m×k, k×n and m×n matrices resp. Partition these matrices into 
M×K, K×N and M×N grids of bm×bk, bk×bn and bm×bn blocks. 
Suppose that fast memory can hold one block in C, A and B at 
the same time. Consider the ijk/jik-variant of the algorithm that 
holds the block of C until all updates to it are accumulated (other 
variants may involve multiple updates of C from different 
threads resulting in a race condition). Then computing one block 
in C requires fetching K blocks of A and B. There are M⋅N 
blocks in C, so in total these fetches consume M⋅N⋅K⋅bm⋅bk + 
M⋅N⋅K⋅bk⋅bn = m⋅n⋅k⋅(1/bn+1/bm) words of bandwidth. This is 
2/(1/bn+1/bm) times less than if no blocking is used, i.e. if bm = 
bn = bk = 1. Since this factor does not depend on bk, small bk 
can be recommended when the fast memory is small. For 
example, bm = bn = b, bk = 1 requires nearly 3× less local 
storage than bm = bn = bk = b but requires the same bandwidth. 
We use bk = 4, which corresponds to a moderate unrolling of the 
inner loop. Below we refer to bm×bn as the block size. 

The amount of bandwidth reduction should be at least as 
large as the flop-to-word ratio of the machine. This ratio is 18 
for GeForce 8800 GTX if our goal is approaching 346 Gflop/s 
under 75 GB/s cap on the bandwidth and 12 if the goal is 230 
Gflop/s. Thus, the minimum block is 18×18 and 12×12 resp. We 
were satisfied with the results we got with 32×32 (not discussed 
in this paper) and 64×16 blocking and did not try using smaller 
blocks. 

Our algorithm is similar to one by Agarwal and Gustavson 
[1989] designed for IBM 3090 Vector Facility and Anderson et 
al. [2004] for Cray X1. In these implementations blocks in A and 
C are stored in registers and blocks in B are in other fast 
memory that is shared across different vector elements — scalar 
registers and cache respectively. We keep B in local memory. 
Therefore, each multiply-and-add instruction uses data in local 
memory that bound the performance of algorithm by 66% of the 
arithmetic peak as found in Section 3.5. In practice we achieve 
60% of the arithmetic peak as discussed below in detail. 
Substantially faster solution should rely on using less expensive 
sharing of data in matrix blocks than local memory. 

4.2 Implementation Details 
We implemented the C := αAB + βC and C := αABT + βC cases 
of matrix multiplication for matrices in column-major layout, 
where α and β are scalars. We got our best results with vector 
length 64. We create M⋅N vector threads, one thread per 64×16 
block in C. Only non-cached memory access is used. Matrix A is 
fetched in 64×4 blocks. Matrix B is fetched in 16×16 blocks and 
matrix BT is fetched in 4×16 blocks. This ensures that all 
memory fetches follow the SIMD restrictions and can run at 
maximum bandwidth. In multiplying AB, a block of B is laid out 
in the row-major format in local memory (same for the block of 
BT in ABT). This reduces the amount of pointer arithmetic 
required to iterate through it. 16×16 arrays are padded as 
advised in [NVIDIA 2007] to avoid bank conflicts in column 
access when storing 16×4 blocks in the AB case. To improve 
latency hiding, we prefetch one block ahead in the ABT code3. 
The other code has a sufficiently long body so that the compiler 
puts gather instructions sufficiently early. Figure 4 illustrates 
these algorithms. 

Similar code is used to deal with block triangular matrices 
such as that appear in Cholesky factorization. When C is block 
triangular, we create as many threads as it has nonzero blocks. 
Since threads are always created as a 1D or 2D array, this 
involves extra arithmetic in converting the thread ID into a block 
index (a block triangular matrix is cut in two pieces that are 
flipped and fit together to make a rectangle). A simpler solution 
would be creating threads as for a full matrix, and making 
threads corresponding to the non-participating blocks (those 
below or above the diagonal) exit immediately. If either A or B 
is block triangular, we modify the thread’s startup code to adjust 
pointers in matrices A and B and/or number of iterations of the 
inner loop according to the thread ID. Either way we don’t 
change the structure of the inner loop, thus the code runs at 
similar peak rates as the usual matrix-matrix multiply. 

The code is written in CUDA’s C to offload part of the work 
to the compiler. As runtime of our implementation is bound by 
instruction slots and register usage, it was important to ensure 

                                                 
3 using prefetching and “–maxrregcount 32” compiler option is due 
to Paul Leventis 
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C := C + AB C := C + ABT 
GPU peak 

CUBLAS est. actual no fetch no pref. CUBLAS est. actual no fetch no pref. 
FX5600 230 127 202 205 210 183 122 197 205 205 191 

8800GTX 230 128 202 206 210 186 122 197 205 205 192 
8800GTS 152 84 133 136 138 123 81 130 136 136 127 
8600GTS 62 35 55 56 57 49 33 53 56 56 50 

Table 2: Estimated and best observed rates in Gflop/s when multiplying square matrices up to 4096×4096. Peak — the peak for multiply-
and-add operation with one argument in local memory according to our benchmarks. CUBLAS — cublasSgemm in CUBLAS 1.1, est. 
— the estimated rate, actual – the observed rate, no fetch — fetches in A and B substituted with assignments, no pref. — no prefetching 

used. For comparison, sgemm in Intel MKL 10.0 runs at up to 70 Gflop/s on 2.4GHz Core2 Quad. 

Figure 5: Runtime of the three versions of matrix-matrix 
multiply run on 8800GTX: one in CUBLAS 1.1, our algorithm 
and the prototype optimized for small C. In all cases the shared 
dimension of A and B was 1024. In our implementation, blocks 

in C are 64×16, in CUBLAS it is 32×32. 
 

Figure 6: Rates in multiplying square and thin matrices on 
8800GTX and 2.4GHz Core2 Quad. 

efficient code generation. This was accomplished using decuda. 
We needed to enforce a tight register budget by using the “-
maxrregcount 32” compiler option. This ensures that each 
vector thread uses not more than 32 × vector length = 2048 
registers, so 4 vector threads can fit on one core at a time. This is 
important in hiding memory latency. 

Our algorithm uses little of local memory — up to 7.5% and 
28% of the resource at full load in ABT and AB respectively. 
This is an example of efficient usage of registers as the primary 
scratch space. 

The performance of the code is highly compiler-dependent. 
The performance cited was obtained using the compiler in 
CUDA SDK 1.1. Code produced by the previous compiler 
version performs substantially slower. Code produced when 
compiling on 64-bit Linux runs ~10% slower unless forced to 
compile into 32-bit with compiler option “-m 32”. 

4.3 Optimization for Small Matrices 
Thread-level parallelism may be not sufficient to hide memory 
latencies if matrix C is small. For example, at least 64 vector 
threads are required to achieve full-occupancy on 16-core GPUs. 
This corresponds to 256×256 or 1024×64 dimensions of C. Such 
matrices may be important in some applications, such as in 
Crout version of the LU decomposition. Importance of this issue 
is likely to grow with time, as future processors may have many 
more loosely connected cores. 

In this case we might wish to extract another level of 
parallelism available in matrix multiply — in the dot products 
that define entries of the output matrix: Cij = αΣAikBkj+βCij. We 
split the dot product into partial sums that are computed with 
different threads. The partial sums are summed up and merged 
with matrix C using a different kernel. In our prototype 
implementation, the optimal number of partial sums is found 
using brute force search for every particular matrix dimension. 
This algorithm consumes extra bandwidth by keeping 
intermediate data in the off-chip memory and costs another 
kernel launch overhead. But it may worth it as we shortly see. 

4.4 Performance Analysis 
To estimate the performance of the algorithm, we analyze the 
disassembler output (decuda). The inner loop of the C := αAB + 
βC (C := αABT + βC) program has 312 (83) instructions, 256 
(64) of which are multiply-and-adds with operands in local 
memory and 4 (6) instructions are half-width (i.e instruction 
code is 32-bit wide; other instruction codes are 64-bit wide). 
Assuming that multiply-and-adds have a throughput of 6 cycles 
per warp, half-width instructions take 2 cycles and all other 
operations take 4 cycles, we estimate the asymptotic Gflop/s 
rate. The estimated and observed rates are listed in Table 2. 
There is a consistent underestimate within 2−4%. 

To check that our code is not bound by the memory 
bandwidth and latency in reading A and B, we substituted 

assigning a value at the pointer with assigning the pointer value 
itself in all these reads. This preserves the dependence pattern 
and produces similar machine code as we checked with the 
disassembler. To make feasible assigning pointers to floating 
point variables in CUDA we also substitute pointers to A and B 
with floating point indices. Table 2 shows that performance is 
within 3% of the original, i.e. memory bandwidth or latency do 
not factor in the performance in a substantial degree. 

Another test version of the code does not use prefetching.  In 
the case of the ABT version this amounts to substituting copies 
before the first local barrier as in Fig. 4 with appropriate 
memory accesses. In the case of the AB version, this means that 
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all fetches of A are placed after the first local barrier to avoid 
extra overlap in latencies. According to the table, these codes 
run 7−11% slower indicating the effectiveness of using 
prefetching in hiding the latency. 

On all four GPUs the code performed at 89–90% of the peak 
performance with participation of local memory, or 59–60% of 
the peak arithmetic performance. This means it scales well with 
the number of cores and clock rate, corresponds to 11−14 
Gflop/s per core. Substantially faster code could be built only if 
using local memory less intensively. 

Future GPUs might have faster access to local memory. If 
accessing local memory in multiply-and-add did not involve 
extra cost and latency was still well-hidden, a similar 
performance estimate promises ~80% of arithmetic peak bound 
by ~20% of instructions spent in pointer arithmetic, fetch 
instructions, synchronization and flow control. For comparison, 
sgemm in Intel MKL 10.0 run on a 2.4GHz Core2 Quad runs at 
70 Gflop/s, which is 91% of the arithmetic peak. 

64×16 blocking yields 25.6× reduction of bandwidth 
consumption. Thus, 206 Gflop/s achieved on 8800 GTX 
corresponds to 32 GB/s in reading matrices A and B, which is 
43% of the peak sustained bandwidth. In contrast, some of the 
earlier methods, such as Govindaraju et al. [2006] and 
Fatahalian et al. [2004] are bandwidth-bound. 

Fig. 5 plots runtime of the algorithm versus the number of 
blocks in C, i.e. the number of vector threads. Step-pattern is 
due to the round-robin distribution of vector threads across the 
GPU cores. This produces poor load balance when number of 
threads is small. The runtime of the two-stage version optimized 
for small matrices grows nearly linearly with the amount of the 
work done as it creates many more threads than the number of 
blocks in C. Fig. 6 summarizes the performance of our algorithm 
for square and skinny matrices compared to CUBLAS 1.1 and 
matrix multiply as implemented in Intel MKL 10.0 and run on 
2.4GHz Core2 Quad Q6600 running 64-bit Linux. 

The version of the code that deals with a square block 
triangular matrix C and full matrices A and B runs at the same 
peak rates as for a full matrix C. However, a simpler solution 
based on more threads some of which exit early runs at 10% 
lower peak and was ~30% slower for some matrix sizes. Thus, 
creating large number of empty threads may have a substantial 
impact on the overall performance. 

5 Implementation of One-Sided Matrix 
Factorizations 
We consider the factorization of matrices that reside in the CPU 
memory in column-major layout, and whose factorizations 
overwrite the original data. The intention is to match the 
semantics of LAPACK routines [Anderson et al. 1990]. 
However, for the purpose of this study we restrict our attention 
to square matrices whose dimension is a multiple of the block 
size used. 

There are three classical bulk-synchronous variants of LU 
factorization — left-looking, right-looking and Crout [Dongarra 
et al. 1998]. We dismiss the left-looking scheme as it does about 
half its flops in triangular solves with small number of right-
hand sides and so has limited inherent parallelism. We prefer the 
right-looking algorithm to the Crout algorithm because it 
exposes more thread-level parallelism in the calls to matrix-
matrix multiply. Cholesky and QR factorizations work in the 
same manner — the entire matrix is updated as soon as next 
block column is available. 

Panel factorization is done on the CPU as done 
independently by Barrachina et al. [2008] and Baboulin et al. 
[2008]. However, in our implementation triangular solve in 
Cholesky is also done on the CPU (we are most interested in 

better performance at large problem sizes). The panel 
factorization is overlapped with computation on the GPU using 
a look-ahead technique (see e.g. Dongarra and Ostrouchov 
[1990] who call it pipelined updating). This requires transferring 
matrix panels from the GPU to CPU memory and back. The 
transfers are currently not overlapped with the computation on 
the GPU, as our best GPUs (8800GTX and FX560) do not 
permit it (unlike the newer GPUs). 

To avoid extra overhead in the transfers, the panels are 
placed into their final output location when transferred to the 
CPU memory. Thus panel factorization produces the final 
results for those locations, except for LU factorization, which 
requires pivoting of the entire matrix at each panel factorization, 
which is done on the GPU. The transfer of the triangular matrix 
in the Cholesky factorization is done by transferring a set of 
rectangular blocks that includes the triangular part. The width of 
the blocks is optimized using the performance model presented 
in Section 3.2. 

To avoid the severely penalized strided memory access in 
pivoting on the GPU, the matrix is laid out in the GPU memory 
in row-major order. This involves extra overhead for the 
transposition and applies to LU factorization only. The 
transposition of the square matrix is done in-place to avoid extra 
space requirements (a slightly more complicated solution may 
be used with non-square matrices). When the panel is transferred 
to the CPU memory and back, it is transposed on the GPU using 
an additional, smaller, buffer. Pivoting kernel does 64 row 
interchanges per call to amortize the kernel launch overhead. 
The pivot indices are passed in as function parameters that are 
accessible via local memory in CUDA. This avoids any memory 
access overhead in reading them. 

Only the lower triangular part of the output of the panel 
factorization in the QR algorithm is needed for the update done 
on the GPU. It is filled in with zeros and a unit diagonal to 
create a rectangular matrix, so that it can be multiplied using a 
single matrix-matrix multiply. A similar technique is used in 
ScaLAPACK [Choi et al. 1996]. The same technique is used 
with the small triangular matrix that arises in the panel 
factorization in QR. These fill-ins are done on the CPU to 
overlap with the work on the GPU. 

Instead of running triangular solve in the LU decomposition 
we run matrix-matrix multiply with the inverse of the triangular 
matrix. The inverse is computed on the CPU. Unlike other 
optimizations, this may affect the numerical stability of the 
algorithm. However, our numerical tests so far show no 
difficulty and in fact the stability of either algorithm depends on 
the essentially the same assumption, namely that L−1 is not too 
large in norm, since this bounds both pivot growth and the 
accuracy of the triangular solve. In the future we might revert to 
triangular solve when ||L−1|| is too large. 

The block size used is the same as in the matrix multiply 
(64). A larger block size could reduce bandwidth consumption 
and improve performance with large matrices. We address the 
bandwidth consumption using two techniques. 

The first technique is a variant of 2-level blocking (this was 
independently done in [Barrachina et al. 2008]). Both levels are 
done in the right-looking manner to use a large number of 
threads in the matrix multiply. A novel tweak is that we switch 
to the coarse blocking level when only half the finer level is 
complete. This avoids updating matrices that have too few block 
columns and so offer little thread parallelism in the matrix 
multiplies. Note, that this approach is not a subset of the 
traditional recursive blocking. 

A different technique is used in QR factorization, which has 
a different structure of updates. We used autotuning to choose 
best block size (multiple of 64) at every stage of the algorithm. 
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Figure 7: Rates achieved in the factorizations using Core2 Duo 
with GeForce 8800GTX (black), using Core2 Quad alone (red) 

and in the BLAS3 operations on the GPU as used in the 
factorizations (green). 

Figure 8: Speedup versus CPU-alone versions. 

Core2 Duo Core2 Quad 
 8800GTX

Gflop/s Gflop/s speedup Gflop/s speedup

Cholesky 183 23.0 7.4× 34.9 5.5× 

LU 179 22.7 7.7× 59.2 3.0× 

QR 192 22.5 8.3× 44.8 4.3× 

sgemm 206 25.9 8.0× 69.8 3.0× 
Table 3: Comparison of best Gflop/s rates in the GPU version 
and the two CPU-alone versions. The speedups shown are the 
best speedups vs. CPU-alone versions that were observed for 

some n. 

Figure 9: Performance of one-GPU and two-GPU versions of 
the LU decomposition. 

Each stage is parameterized with a 3-tuple: the size of the 
trailing matrix, the block size used in panel factorization and the 
block size used in the update (same as used in the last panel 
factorization). In the current prototype we measure the runtime 
for every instance of this 3-tuple within the range of interest. 
Dynamic programming is then used to choose the best sequence 
of the block sizes, similarly to [Bischof and Lacroute 1990]. 
Block triangular matrix multiplies are used wherever possible. 

5.1 LU factorization on two GPUs 
We consider using two GPUs attached to the same workstation. 
We use a column-cyclic layout to distribute the matrix over two 
GPUs. It is convenient, as it does not require communication in 
pivoting, distributes the workload evenly and keeps CPU-GPU 
data transfers simple. Each GPU sees only its own fraction of 
the matrix (even or odd columns). The exception is the updates, 
which require the transfer to each GPU of an entire panel. The 
columns that do not belong to the layout are discarded after the 
update is complete. The structure of the algorithm is same as in 
the single-GPU case but no 2-level blocking is currently 
implemented as it requires extra space. 

6 Results 
All single-GPU results in this section are given for a desktop 
system that has one 2.67GHz Core2 Duo E6700 and one 
GeForce 8800 GTX running Windows XP. Two-GPU results are 
given for the same system with two GeForce 8800 GTXs. We 
also compare results with one 2.4GHz Core2 Quad Q6600 
running 64-bit Linux. In all cases the Intel MKL 10.0 library is 
used for factorizations on the CPU and CUDA SDK 1.1 for 
programming the GPU. 

Input and output data are in the pinned CPU memory, which 
provides a compromise between usefulness in applications (that 
are likely to run on the CPU) and performance (slower transfers 
to/from GPU if the data is in pageable memory). The cost of the 
memory allocation is not included in the timings. 

The correctness of the algorithms is tested in the following 
way. Input matrix A is synthesized with random entries 
uniformly distributed in [–1,1] (to guarantee symmetric positive 
definiteness, A = 0.001⋅I + XTX is used instead in testing the 
Cholesky factorization, where X is the random matrix as 
described above and I is the identity matrix). Output factors are 
multiplied and max-norm of its difference with the input matrix 
is found. This measures the backward error in the factorization. 
We found that this error is about the same whether using our 
GPU-based algorithm or the purely CPU-based algorithm in the 
Intel MKL  (always within a factor of 2, and within 20% in most 
cases). The variant of the LU factorization that multiplies by the 
inverses of the diagonal blocks of the triangular matrix has 
shown about same accuracy as when running triangular solves 
on the GPU. As an example, the errors as measured above in 
LU, QR and Cholesky at n = 8192 are about 2000⋅ε⋅||A||max, 
200⋅ε⋅||A||max and 17⋅ε⋅||A||max resp., where ε = 2–23 is machine 
epsilon in IEEE single precision and ||A||max is the max-norm of 
A. 

6.1 Summary of Performance 
Figure 7 shows the Gflop/s rates sustained in the GPU-based 
matrix factorization routines and their BLAS3 calls. Redundant 
flops, such as when multiplying by the zero fill-ins in the 
triangular matrices, are not counted. Operations with block 
triangular matrices are also counted as BLAS3, although they do 
not strictly match the semantics. One can see that BLAS3 rates 
approach peak rates of the matrix-matrix multiply presented in 
Section 4.4. Performance of BLAS3 bounds performance of 
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Figure 10: The breakdown of time in the LU decomposition. 

Figure 11: Slowdown when omitting one of the optimizations 
used. 

entire factorization as it’s the fastest component of the 
algorithm. The gap between BLAS3 and factorization rates 
illustrates the impact of the other work done. The gap is the 
largest in the case of LU decomposition, which requires 
pivoting, transposition and transferring the final result back to 
the CPU unlike the two other factorizations. 

The same plot also includes the rates achieved in the 
factorizations done using Core2 Quad alone, and Figure 8 details 
the speedups vs. Core2 Duo and Core2 Quad. According to the 
Figure, the crossover between the GPU-based and CPU-alone 
implementations is at n = 200−400 for LU and QR algorithms. 
Cholesky always runs faster than the CPU-alone implementation 
on the Core2 Duo (which might indicate inefficiency of the CPU 
implementation). Crossover with the performance of the CPU-
alone algorithm running on Core2 Quad is at n = 500−700. The 
best performances are summarized in Table 3. It shows that the 
speedup is nearly the same as the speedup in the matrix-matrix 
multiply (sgemm) and even better when comparing to the Core2 
Quad. 

Finally, Fig. 9 shows the performance of the LU 
decomposition that achieves ≈ 300 Gflop/s at n ≈ 18,000 by 
running two GPUs in parallel. 

6.2 Performance Analysis 
The different rates in the BLAS3 routines in Fig. 8 are due to 
different amounts of the thread level parallelism (TLP) exposed 
in the bulk matrix multiplies. Right-looking LU decomposition 
exposes the most TLP, and right-looking Cholesky exposes less, 
as it runs similar updates but for triangular matrices that have 
about half as many blocks (this may explain why the Cholesky 
curve looks similar to the LU curve shifted right by factor of 
two). Around half of the BLA3 operations in QR factorization 
are involved in producing a skinny matrix, thus running slower 
than in BLAS3 in LU factorization. BLAS3 in QR speeds up for 
larger n as adaptive blocking switches to less skinny matrices. 
However, QR factorization achieves the overall highest speed 
among the three factorization as it does more flops in matrix 
multiplies than any other algorithm. 

Fig. 10 shows the breakdown of runtime in the LU 
factorization. The breakdown for Cholesky looks similar, but 
does not have the transpose time, the CPU-GPU transfer takes 
less time (no transferring the entire matrix back) and overlap 
between CPU and GPU is not as good due to less work done in 
matrix-matrix multiply (the panel factorization has about same 
cost). We did not do this analysis for QR but expect the work 
done on the CPU to be hidden better than in LU. The breakdown 
shows that up to 90% of the runtime is consumed by computing 
on the GPU and about of 10% of this time overlaps with 
computing on the CPU. It reveals a potential use of 
asynchronous transfers that could save another 10% of time, if 
available in hardware. Another speedup is possible with 
offloading more work to the CPU as currently up to 80% of time 
GPU works alone. Time spent in transposing the matrices is not 
substantial. Individual measurements have shown that transpose 
runs at 25−45 GB/s for n > 1000. This variation in bandwidth is 
due to the moderate granularity of this operation. For example, it 
takes ~7.5μs to copy or transpose a 1024×64 matrix at 70 GB/s, 
which is about the same as the kernel launch overhead. CPU-
GPU transfers run at 3.0−3.3GB/s for n > 1000, which 
approaches the peak sustained bandwidth as in Section 3.2. 

Fig. 11 evaluates the impacts of different optimizations 
used. The most important optimization was using row-major 
layout on the GPU. If not used, we lose about half of the Gflop/s 
rate. We measured pivoting individually and found that it takes 
1−10% of time in the entire computation for n > 1000 if done in 
the row-major layout. In that case it achieves 7−17 GB/s of 

effective bandwidth. When using column-major layout, it can 
take up to 56% of total time and run at 0.2−2GB/s, with slower 
rates for larger matrices. 

A surprisingly large speedup (up to 30%) was obtained by 
performing triangular solve via multiplying by the inverse 
matrix. Triangular solve with a 64×64 triangular matrix and 
4096 right hand sides runs at 13 Gflop/s when using CUBLAS 
1.1 or CUBLAS 2.0 beta. It is an order of magnitude slower than 
the 160 Gflop/s rate achieved in multiplying a 64×64 matrix by 
a 64×4096 matrix that does the same work (this is 80 Gflop/s if 
not counting the redundant work). 

The best speedups by using autotuning to choose block sizes 
in QR and in 2-level schemes in LU and Cholesky were 7%, 6% 
and 4% correspondingly and factored in only for n > 4096. 

According to Fig. 9, using two GPUs yields only ~67% 
improvement in the Gflop/s rate. Benchmarks of CPU-GPU 
transfers showed only 1.6 GB/s peak in the transfers with the 
second GPU. Apparently it is working at PCI-e ×8 rate, we do 
not know if this can be remedied. As we perform factorization in 
a bulk-synchronous manner, the runtime is bound by the slowest 
transfer. There are other sources of slowdown, such as extra 
CPU-GPU bandwidth consumption, lack of 2-level blocking and 
keeping the number of CPUs constant. 

6.3 Comparison with Other Work 
The first implementation of the LU factorization using GPUs 
that we know was published by Galoppo et al. [2005] and ran at 
up to ~10 Gflop/s for n = 4000 without pivoting and at ~6 
Gflop/s for n = 3500 with partial pivoting on the older GeForce 
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7800. This is 13× and 22× slower than our implementation done 
with partial pivoting at these matrix dimensions. As discussed 
above, in our implementation pivoting does not introduce as 
much slowdown. 

Barrachina et al. [2008] report 50 Gflop/s in LU 
factorization and 41 Gflop/s in Cholesky factorization for n = 
5000 using CUBLAS 1.0 on GeForce 8800 Ultra. This GPU is 
faster than the 8800 GTX that we use (6.4% higher processor 
clock rate and 11% higher pin-bandwidth). Our implementation 
achieves 2.9× and 3.7× higher speed for LU and Cholesky resp. 
This is due to our improved matrix-matrix multiply routine and 
the optimizations evaluated above. 

Baboulin et al. [2008] describes implementation of LU and 
QR algorithms that run at up to ≈55 Gflop/s on Quadro FX5600 
for n ≈ 19,000 using CUBLAS 1.0. This GPU is similar to what 
we use (see Tables 1 and 2). Their implementation of Cholesky 
runs at up to 90 Gflop/s if using CUBLAS and approaches 160 
Gflop/s if using an early version of the matrix multiply 
described in this paper and offloading BLAS1/BLAS2 
operations to the CPU. Our implementation achieves higher 
rates at smaller orders of matrix, thus is more efficient. 

Castillo et al. [2008] report results for Cholesky 
factorization run on 4-GPU NVIDIA Tesla S870. Each of these 
GPUs is roughly equivalent to Quadro FX5600. Authors report 
180 Gflop/s on a system at n ≈ 10,000. We achieve this 
performance using one GPU only. Their result was later 
improved to 424 Gflop/s at n ≈ 20,000 by using matrix multiply 
routine presented in this paper [Quintana-Orti et al. 2008]. 

7 Conclusions 
We have presented the fastest (so far) implementations of dense 
LU, QR and Cholesky factorizations running on a single or 
double NVIDIA GPUs. Based on our performance 
benchmarking and modeling, they attain 80%−90% of the peak 
speeds possible for large matrices. This speed was achieved by 
carefully choosing optimizations to match the capabilities of the 
hardware, including using the CPU in parallel with the GPU to 
perform panel factorizations, which are dominated by BLAS1 
and BLAS2 operations done faster on the CPU. We also 
changed the LU algorithm to use explicit inverses of diagonal 
subblocks of the L factor, and showed this was both faster than 
and as numerically stable as the conventional algorithm. 

We also presented detailed benchmarks of the GPU memory 
system, kernel start-up costs, and barrier costs, which are 
important to understanding the limits of performance of many 
algorithms including our own. We also identified a new way to 
do global barriers faster, but which may or may not provide 
memory consistency. 

Future work includes designing two-sided factorizations, 
such as in dense eigenvalue problems, one-sided factorizations 
on a GPU cluster and exploring the new performance 
opportunities offered by newer generations of GPUs. 
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