Struct ClassificationOutput
pub struct ClassificationOutput<B>where
B: Backend,{
pub loss: Tensor<B, 1>,
pub output: Tensor<B, 2>,
pub targets: Tensor<B, 1, Int>,
}
Expand description
Simple classification output adapted for multiple metrics.
Fields§
§loss: Tensor<B, 1>
The loss.
output: Tensor<B, 2>
The output.
targets: Tensor<B, 1, Int>
The targets.
Implementations§
§
impl<B> ClassificationOutput<B>
where
B: Backend,
impl<B> ClassificationOutput<B>
where
B: Backend,
Trait Implementations§
§
impl<B> Adaptor<AccuracyInput<B>>
for ClassificationOutput<B>
where
B: Backend,
impl<B> Adaptor<AccuracyInput<B>>
for ClassificationOutput<B>
where
B: Backend,
§
fn adapt(&self) -> AccuracyInput<B>
fn adapt(&self) -> AccuracyInput<B>
Adapt the type to be passed to a metric.
§
impl<B> Adaptor<ConfusionStatsInput<B>>
for ClassificationOutput<B>
where
B: Backend,
impl<B> Adaptor<ConfusionStatsInput<B>>
for ClassificationOutput<B>
where
B: Backend,
§
fn adapt(&self) -> ConfusionStatsInput<B>
fn adapt(&self) -> ConfusionStatsInput<B>
Adapt the type to be passed to a metric.
§
impl<B> Adaptor<LossInput<B>> for ClassificationOutput<B>
where
B: Backend,
impl<B> Adaptor<LossInput<B>> for ClassificationOutput<B>
where
B: Backend,
§
impl<B> Adaptor<TopKAccuracyInput<B>>
for ClassificationOutput<B>
where
B: Backend,
impl<B> Adaptor<TopKAccuracyInput<B>>
for ClassificationOutput<B>
where
B: Backend,
§
fn adapt(&self) -> TopKAccuracyInput<B>
fn adapt(&self) -> TopKAccuracyInput<B>
Adapt the type to be passed to a metric.
§
impl<B> ItemLazy for ClassificationOutput<B>
where
B: Backend,
impl<B> ItemLazy for ClassificationOutput<B>
where
B: Backend,
§
type ItemSync = ClassificationOutput<NdArray>
type ItemSync = ClassificationOutput<NdArray>
Item that is properly synced and ready to be processed by metrics.
§
fn sync(self) -> <ClassificationOutput<B>
as ItemLazy>::ItemSync
fn sync(self) -> <ClassificationOutput<B> as ItemLazy>::ItemSync
Sync the item.
Auto Trait Implementations§
impl<B> Freeze for ClassificationOutput<B>where
<B as Backend>::IntTensorPrimitive: Freeze,
<B as Backend>::FloatTensorPrimitive:
Freeze,
<B as Backend>::QuantizedTensorPrimitive:
Freeze,
impl<B> RefUnwindSafe for ClassificationOutput<B>where
<B as Backend>::IntTensorPrimitive: RefUnwindSafe,
<B as Backend>::FloatTensorPrimitive:
RefUnwindSafe,
<B as Backend>::QuantizedTensorPrimitive:
RefUnwindSafe,
impl<B> Send for ClassificationOutput<B>
impl<B> Sync for ClassificationOutput<B>
impl<B> Unpin for ClassificationOutput<B>where
<B as Backend>::IntTensorPrimitive: Unpin,
<B as Backend>::FloatTensorPrimitive:
Unpin,
<B as Backend>::QuantizedTensorPrimitive:
Unpin,
impl<B> UnwindSafe for ClassificationOutput<B>where
<B as Backend>::IntTensorPrimitive: UnwindSafe,
<B as Backend>::FloatTensorPrimitive:
UnwindSafe,
<B as Backend>::QuantizedTensorPrimitive:
UnwindSafe,
Blanket Implementations§
Source§
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§
fn borrow_mut(&mut self) -> &mut
T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read
more
§
impl<T> Instrument for T
impl<T> Instrument for T
§
fn instrument(self, span: Span) ->
Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§
fn in_current_span(self) ->
Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§
impl<T> IntoEither for T
impl<T> IntoEither for T
Source§
fn into_either(self, into_left: bool)
-> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read
more
Source§
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read
more